
Kyuseung Han, Hyeonguk Jang, Sukho Lee, Sung-Eun Kim, Kyudong Hwang, and Jae-Jin Lee
Electronics and Telecommunications Research Institute, Daejeon, South Korea

NPX: Automating Neuromorphic Processor Design
from Spike-Based Learning to FPGA Prototyping FPL 2025 Demo Night

❖ Customization of the Baseline Processor
• HW-XML configured to include two SPI ports for camera

and display

❖ Camera and Display Connection to FPGA Board
• Digilent Genesys2 FPGA board
• Arducam 5MP Plus OV5642 camera
• Digilent OLEDrgb display

❖ Development of Application Software
• Handles camera and display via SPI
• Preprocesses the captured image for network input

❖ 33× Faster Inference
• 202,418 ms (baseline) → 6,096 ms (with NeuGEMM)

A Case Study:
Traffic Sign Recognition System

• An extensible framework for developing lightweight
neuromorphic processors

• Automates the entire design flow from spike-based
learning to FPGA prototyping

• Demonstration of our FPL 2025 paper
• “NeuGEMM: A Reordering-Free Unified GEMM-

Conv2D Accelerator for Lightweight Neuromorphic
Processors”

• Overall Framework

Neuromorphic Processor eXpress
❖ Data Reordering in Lightweight Processors
• Transpose for GEMM & im2col for Conv2D
• Significant overhead due to limited CPU and memory

bandwidth
• Execution time breakdown for Conv2D using im2col

❖ Reordering-Free Accelerator
• Directly accesses arrays in the native C layout
• Supports Conv2D with minimal reconfigurability
• Results in more internal data movement overhead
• Balances workload across CPU, memory, and accelerators

❖ Co-designed with Software
• MatInfo struct describes matrices
 in the original C array layout
• NIL is built upon the MatInfo
• Matrix LSUs access C arrays according to MatInfo

❖ Unified Architecture for GEMM and Conv2D Acceleration

NeuGEMM Accelerator

https://riscvexpress.github.io/npx
Contact: ceicarus@etri.re.kr (Jae-Jin Lee)

• A text format originally used in Darknet (open source
neural network framework written in C)

• Modified to support SNNs
• Used in both training (snnTorch) and inference (NIL)

NN Configuration: NNcfg

❖ Processor Design with RISC-V eXpress (RVX)
• Automatic generation of processor RTL from HW-XML

• RTL Simulation Support
• Automatically generates simulation scripts
• Supports Cadence Xcelium and Siemens QuestaSim

• FPGA Prototyping Support
• Automatically generates AMD Vivado scripts
• Includes preconfigured Vivado components for

supported FPGA boards (e.g. slow_dram)
• Accelerator Extension

• Supports attachment of your own accelerators
• NeuGEMM is provided as a built-in accelerator

Neuromorphic Processor

❖ Overall Learning Process

❖ snnTorch
• An extension of PyTorch for SNNs
• https://snntorch.readthedocs.io

❖ Quantization-Aware Training (QAT)
• Tailored for NPX processors
• Produces integer parameters for efficient inference

❖ Network Construction from NNcfg
• Parser converts NNcfg into snnTorch networks

Spike-Based Learning

❖ RISC-V Binary Generation from Trained Model

❖ Post Process
• Conversion of trained models (network structure and

parameters) into C header files

❖ Neuromorphic Inference Library (NIL)
• C structs for supported layers
• NNcfg parser for layer structs
• Preprocessing functions for supported datasets
• Baseline forward functions for layer structs

• Formulated using virtual matrix operations
• Baseline inference functions for networks

• Sequential layer execution (-O0)
• Based on virtual forward functions

❖ Function Mapping
• Replaces baseline functions with your accelerated ones

Neural Compiler

	슬라이드 1

