RVX CLI Manual for Linux/Windows

Kyuseung Han, Sukho Lee, Jae-Jin Lee

ETRI, Daejeon, South Korea

v2025-

Contents
I_Overviewl
2" Noticel

3 Things to Know|

[4.3 Functionalityl
[4.3.1 Creating a New Plattorm| . .
[4.3.2 Designing a Platform|.
[4.3.3 Synthesizing a Platform| . . .
[4.3.4 Cleaning All Platform Results|

["Application|

[>.3 Functionality|

10-23 or later

[>.3.1 Creating an Application Directory]

[5.3.2 Developing an Application|. .

[5.3.3 Building an Application (Including Compiling)|

[5.3.4 Cleaning Build Results|. . . .
[>.4 Auxiliary Functionality|.

[>.4.1 Specitying Compile Options Manually|

b.4.2 Specitying Compile Sources Manually|

5.4.3 Updating Makefile after RVX Updatel

[6.2 Simulation Functionality|.

[6.2.1 Creating an RTL Simulation Directory|

[6.2.2 Cleaning All Simulation Results|.

[6.2.3 Compiling the Platform RTL Code|

[6.2.4 Displaying the Compilation Log of the Platform RTL Code|

0 O 00 00 ~JTOHOHOH OO OO CU O O UL U i i

© O O O o o

[6.2.5 Simulating the RTL Platform Using an Application|.

0.26 Commonl

[6.2.7 Simulating the Plattorm with an Application|

[6.2.8 Simulating the Plattorm Including an Application Rebuild|

6.2.9

oimulating the Platform from Scratch]

[6.2.10 Simulating with RT'LL. Wavetorm Recording|.

[6.2.11 Simulating with Rebuild and Recordingl

[6.2.12 Simulating with RTL Wavetorm Recording from Boot|

[6.2.13 Opening the Waveform Viewer for Debuggingl

[6.3 Auxihiary Functionality|.

6.3.1

Displaying Applications List[.

[6.3.2 Compiling the Platform RTL Code One by Onel.

6.3.3

Identitying RTL Compilation Failures|

[7 FPGA Prototyping|

1 _Overviewl

[7.2 Prototyping Functionality|

721

Creating a Prototyping Directory| . .

[7.2.2

Creating a Vivado Project|.

723

Generating an FPGA Bitstream| . .

724

Cleaning All Vivado Results|.

[7.3 Validating Functionality]

7.3.1

Programming the FPGA with the Generated Bitstream|

7.3.2 Opening the Terminal to View printf Output|

(3.3 Command @ [uxf.

(3.6 Commonl

737

Running an Application|

[7.3.8 Running an Application with a Rebuild|

[7.3.9 Running an Application with Optimization|

[7.3.10 Running an Optimized Application with a Rebuild|

[7.3.11 Running an Application with Profiling|

7.4 Auxiliary Functionality|.

71

Open a Vivado Project|.

742

Displaying Available FPGA List| . .

743

Displaying Applications List|.

744

Deleting All Prototyping Directories|

745

Enabling Keyboard Input in Minicom|

8 Navigate

10
10
10
11
11
11
11
12
12
12
12

13
13
13
13
13
13
13
14
14
14
14
14
15
15
15
15
16
16
16
17
17
17
17
17
17

18

1 Overview

e This manual provides instructions for using the Command Line Interface (CLI) after RVX is
installed on the user’s machine.

2 Notice

e All results produced using RVX are subject to the following conditions:

— They must not be used beyond the predefined purpose and scope specified in advance for a
particular class or research project.

— They must not be distributed to third parties other than the designated users or organiza-
tions.

— They are free for non-commercial research use, provided that the paper is cited. All other
uses require prior approval and a technology transfer agreement.

3 Things to Know

e Manuals are available online - riscvexpress.github.io

e Any part starting with # should be replaced or modified according to your environment.

On Linux, use the bash shell for command-line operations.

On Windows, use the |Windows Power Shell for command-line operations.
e Skills for Linux

Skills for Windows

riscvexpress.github.io
riscvexpress.github.io
skills-for-linux_en.html
skills-for-windows_en.html

4 Platform

4.1 Overview

A platform includes both the hardware and software associated with an SoC. It is organized under a
directory that shares the same name as the SoC the user intends to design.

a[rvx_init]
#(repo root)
‘ i.e., rvx_lec_hw }7%[Nx—inSta”]
. . app
| imp_class_info | #(platform dir1)|—a[]

i sim_rtl
%{ #(platform base) i.e., lec_apb *[N]
e peem #(platform dir 2)| 1 imp_XXXX |

— README.md >

> Makefile
L,
Figure 1: Detailed Structure of the Platform Directory.

In Figure lec_apb is both the name of the SoC and the name of the corresponding directory.

4.2 File Structure

The structure under #(platform dir) is as follows:

Path Usage Description
./#(platform name).xml Editable SoC description file
./app/ Editable Application development environment
./user/ Editable User-managed environment
.Jutil/ Editable Utility environment
./sim_ rtl/ Use Only RTL simulation environment
Jimp_ XXXX/ Use Only FPGA prototyping environment
.Jarch/ System Reserved Generated from ./# (platform name).xml
./fpga_ component/ System Reserved Used in imp XXXX

4.3 Functionality
4.3.1 Creating a New Platform

e Command:

cmd) cd #(platform base)
cmd) make new PLATFORM_NAME=#(platform name)

e Result:
#(platform base)/# (platform name) is created,

which we refer to as #(platform dir) .

4.3.2 Designing a Platform

e Prerequisite: |Creating a New Platform

e Command:

cmd) cd #(platform dir)
inst) Edit the ./#(platform name).xml file with a text editor.

4.3.3 Synthesizing a Platform

e Prerequisite: Designing a Platform

e Command:

cmd) cd #(platform dir)
cmd) make syn

e Result: #(platform dir)/arch is created.

e Note: #(platform dir)/arch is automatically managed by the RVX tool.

4.3.4 Cleaning All Platform Results
The following files and/or directories are maintained:

./#(platform name).xml , ./app ., ./user, and ./util

cmd) cd #(platform dir)
cmd) make clean

5 Application

5.1 Overview
In the application directory, users can develop and compile the application software source code.

Execution of the application must be performed using either RTL simulation or FPGA prototyping.

5.2 Build Mode

debug release profile

assert™) X X
assert must* O) O
printf (0] O X
printf must O O O
debug print* O O O

5.3 Functionality
5.3.1 Creating an Application Directory

e Command:

cmd) cd #(platform dir)/app
cmd) make new APP_NAME=#(app name)

e Result:
#(platform dir) /app/# (app name) is created,

which we refer to as #(app dir) .

5.3.2 Developing an Application

The application software must be written in C,
and the source code should be stored in #(app dir)/src .

The location of the source code can be changed by modifying #(app dir) .

5.3.3 Building an Application (Including Compiling)

e Prerequisite: Synthesizing a Platform

e Command:

cmd) cd #(app dir)
cmd) make rtl

e Result: #(app dir)/rtl.release is created.

e Note: #(app dir)/rtl.release is automatically managed by the RVX tool.

5.3.4 Cleaning Build Results
The following files and /or directories are maintained:

./Makefile , ./compile list , and ./src

cmd) cd #(app dir)
cmd) make clean

5.4 Auxiliary Functionality
5.4.1 Specifying Compile Options Manually

Specify CFLAGS RELEASE . CFLAGS DEBUG , and/or CFLAGS PROFILE
in #(app dir)/rvx each.mh , depending on your needs.

5.4.2 Specifying Compile Sources Manually
Edit #(app dir)/compile list .
5.4.3 Updating Makefile after RVX Update

This is not mandatory unless an error occurs.

cmd) cd #(app dir)
cmd) make update_makefile

6 RTL Simulation

6.1 Overview

This manual is intended for simulating applications on an RTL-based hardware platform. Applications
developed in #(app dir) are converted into RISC-V binary files through the build process, and are
then loaded into the main memory of the RTL platform at the start of simulation. The simulation
automatically terminates when the application’s 'main function returns.

Note that this process requires a license for the mixed-language RTL simulator, which must be obtained
separately.

6.2 Simulation Functionality

6.2.1 Creating an RTL Simulation Directory

e Prerequisite: Synthesizing a Platform

e Command:

cmd) cd #(platform dir)
cmd) make sim_rtl

e Result:
#(platform dir)/sim_rtl is created,

which we refer to as #(sim dir) .

e Note: #(sim dir) is automatically managed by the RVX tool.

6.2.2 Cleaning All Simulation Results

cmd) cd #(sim dir)
cmd) make clean

6.2.3 Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make compile_test

6.2.4 Displaying the Compilation Log of the Platform RTL Code

cmd) cd #(sim dir)
cmd) make compile_check

6.2.5 Simulating the RTL Platform Using an Application
6.2.6 Common

e Prerequisite: Developing an Application

e Build Mode:

— The default value is debug for all simulation commands.

— You can explicitly specify BUILD MODE when invoking make .

— Or, can be defined in |#(sim dir) /rvx_each.mh .

— Or, can be defined in #(platform dir)/user/sim/env/set sim env.mh .
e Note:

— |Build compiles only the parts that have changed.

6.2.7 Simulating the Platform with an Application
e Included Process:
— Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name).sim

6.2.8 Simulating the Platform Including an Application Rebuild
e Included Process:
— Cleaning Build Results
— Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name) .resim

6.2.9 Simulating the Platform from Scratch

e Included Process:

— Cleaning All Simulation Results
— Cleaning Build Results

Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name).all // make clean #(app name).resim

10

6.2.10 Simulating with RTL Waveform Recording
e Included Process:
— Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name) .debug

6.2.11 Simulating with Rebuild and Recording
e Included Process:

— Cleaning Build Results
— Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name) .redebug

6.2.12 Simulating with RTL Waveform Recording from Boot
e Included Process:
— Building an Application
— Compiling the Platform RTL Code

cmd) cd #(sim dir)
cmd) make #(app name) .debug_init

6.2.13 Opening the Waveform Viewer for Debugging

cmd) cd #(sim dir)
cmd) make view

11

6.3 Auxiliary Functionality
6.3.1 Displaying Applications List

cmd) cd #(sim dir)
cmd) make app_list

6.3.2 Compiling the Platform RTL Code One by One

This command helps identify missing include files.

cmd) cd #(sim dir)
cmd) make compile_test_all

6.3.3 Identifying RTL Compilation Failures

cmd) cd #(sim dir)
cmd) make compile_check

12

7 FPGA Prototyping

7.1 Overview

e This manual is intended for validating applications on an FPGA platform.
e This process requires an FPGA board compatible with RVX (Supported Boards)).

e This process also requires a license for AMD Vivado, which must be obtained separately.

7.2 Prototyping Functionality
7.2.1 Creating a Prototyping Directory

e Prerequisite: Synthesizing a Platform

e Command:

cmd) cd #(platform dir)
cmd) make #(FPGA name) // i.e., make arty-100t

e Result:
#(platform dir) /imp #(fpga name) +#(date) is created,

which we refer to as #(fpga dir) .

e Note: #(fpga dir) is automatically managed by the RVX tool.

7.2.2 Creating a Vivado Project

e Command:

cmd) cd #(fpga dir)
cmd) make project

7.2.3 Generating an FPGA Bitstream

e Included Process: Creating a Vivado Project

e Command:

cmd) cd #(fpga dir)
cmd) make imp

e Result:
A bitstream and reports are generated in the #(fpga dir)/imp result directory.

7.2.4 Cleaning All Vivado Results

cmd) cd #(fpga dir)
cmd) make clean

13

rvx-fpga-manual-en.html

7.3 Validating Functionality
For the following functionalities, you must power on the FPGA board and connect it to your computer.
7.3.1 Programming the FPGA with the Generated Bitstream

e Prerequisite:

— Generating an FPGA Bitstream
— An FPGA board connected to your computer - Manual

e Command:
cmd) cd #(fpga dir)

cmd) make program

7.3.2 Opening the Terminal to View printf Output
e Prerequisite: Programming the FPGA with the Generated Bitstream
7.3.3 Command @ Linux

cmd) cd #(fpga dir)
cmd) make printf

7.3.4 Command @Q Windows

#R PuTTY Configuration ? X
Device Manager EEI Category:
= Session Basic options for your PuTTY session
e Action View Help . Logging iy the destination you want to conni
= - Terminal Py iﬁ;‘“d—
» | 5| K = Keyboard =l =
Bel [coms | (115200 {]
¥ Mice and other pointing devices Features Connection type:
i - Windo ORaw OTelnet ORlogin O SSH m
=8 IDE ATA/ATAPI controllers T Aopeaance (3]
Y PT Behaviour Load, save or delete a stored session
= bithe ottt Translation Saved Sessions
=3 Keyboards 4)- Selection [fpga ‘
== Monitors Colours Defautt Settings
2 print quees & Connection P — |
i ~Data Save
T Processors Proxy oa
Telnet lete
@ SD host adapters Rlogin
i Security devices - SSH
O Ports (COM & LPT) Seriel Close window on exit:
g Aways ONever @ Only on clean exit
§ USB Serial Port (COM8)
About Help Open Cancel

Figure 2: Device Manager and PuTTY.

14

rvx-fpga-manual-en.html

cmd) cd #(fpga dir)

cmd) make printf

> Device Manager and PuTTY will be launched.

inst) Check the USB Serial Port number in Device Manager.

> In Figure [2, the port number is COMS.

inst) On PuTTY, configure the settings as highlighted by the three red boxes
in Figure [2.

> If you save the session, you can reuse these settings later.

inst) Open

7.3.5 Running an Application on the FPGA Prototype
7.3.6 Common
e Prerequisite:
— Developing an Application
— Programming the FPGA with the Generated Bitstream
— Opening the Terminal to View printf Output
e Note:

— |Build compiles only the parts that have changed.
— Make sure all the sliding switches of the FPGA board are set to the down position.

7.3.7 Running an Application

e Included Process:

— Building an Application with BUILD MODE=debug

cmd) cd #(fpga dir)
cmd) make #(app name) .run

7.3.8 Running an Application with a Rebuild

e Included Process:

— Cleaning Build Results
— Building an Application with BUILD MODE=debug

cmd) cd #(fpga dir)
cmd) make #(app name) .rerun

15

7.3.9 Running an Application with Optimization

e Included Process:

— Building an Application with BUILD MODE=release

cmd) cd #(fpga dir)
cmd) make #(app name).opt

7.3.10 Running an Optimized Application with a Rebuild
e Included Process:
— Cleaning Build Results
— Building an Application with BUILD MODE=release

cmd) cd #(fpga dir)
cmd) make #(app name) .reopt

7.3.11 Running an Application with Profiling
e Included Process:
— Cleaning Build Results
— Building an Application with BUILD MODZE=profile

cmd) cd #(fpga dir)
cmd) make #(app name) .profile

16

7.4 Auxiliary Functionality
7.4.1 Open a Vivado Project

e Prerequisite: |Creating a Vivado Project

e Command:

cmd) cd #(fpga dir)
cmd) make open_project

7.4.2 Displaying Available FPGA List

cmd) cd #(platform dir)
cmd) make fpga_list

7.4.3 Displaying Applications List

cmd) cd #(fpga dir)
cmd) make app_list

7.4.4 Deleting All Prototyping Directories

cmd) cd #(platform dir)
cmd) make clean_imp

7.4.5 Enabling Keyboard Input in Minicom

Hardware Flow Control

Software Flow Control

Figure 3: Minicom Setup.

cmd) sudo minicom -s
inst) Select ‘‘Serial port setup’’.
inst) Configure the settings as shown in Figure .

17

8 Navigate

e Home

18

index.html

	Overview
	Notice
	Things to Know
	Platform
	Overview
	File Structure
	Functionality
	Creating a New Platform
	Designing a Platform
	Synthesizing a Platform
	Cleaning All Platform Results

	Application
	Overview
	Build Mode
	Functionality
	Creating an Application Directory
	Developing an Application
	Building an Application (Including Compiling)
	Cleaning Build Results

	Auxiliary Functionality
	Specifying Compile Options Manually
	Specifying Compile Sources Manually
	Updating lightgrayMakefile after RVX Update

	RTL Simulation
	Overview
	Simulation Functionality
	Creating an RTL Simulation Directory
	Cleaning All Simulation Results
	Compiling the Platform RTL Code
	Displaying the Compilation Log of the Platform RTL Code
	Simulating the RTL Platform Using an Application
	Common
	Simulating the Platform with an Application
	Simulating the Platform Including an Application Rebuild
	Simulating the Platform from Scratch
	Simulating with RTL Waveform Recording
	Simulating with Rebuild and Recording
	Simulating with RTL Waveform Recording from Boot
	Opening the Waveform Viewer for Debugging

	Auxiliary Functionality
	Displaying Applications List
	Compiling the Platform RTL Code One by One
	Identifying RTL Compilation Failures

	FPGA Prototyping
	Overview
	Prototyping Functionality
	Creating a Prototyping Directory
	Creating a Vivado Project
	Generating an FPGA Bitstream
	Cleaning All Vivado Results

	Validating Functionality
	Programming the FPGA with the Generated Bitstream
	Opening the Terminal to View lightgrayprintf Output
	Command @ Linux
	Command @ Windows
	Running an Application on the FPGA Prototype
	Common
	Running an Application
	Running an Application with a Rebuild
	Running an Application with Optimization
	Running an Optimized Application with a Rebuild
	Running an Application with Profiling

	Auxiliary Functionality
	Open a Vivado Project
	Displaying Available FPGA List
	Displaying Applications List
	Deleting All Prototyping Directories
	Enabling Keyboard Input in Minicom

	Navigate

